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There are many methods of stability analysis of nonlinear automatic 

control systems. As a basis of many investigations in this field the 

works of Lur’e [ 31 were used in which he applied a special transformation 

to equations of motion of nonlinear automatic control systems and in- 

dicated a method of constructing Liapunov’s function for them. Lur’e’s 

method reduces the problem of stability of equilibrium position in auto- 

matic control systems to the investigation of solvability of algebraic 

systems of quadratic equations. This method gives wide stability regions 

and is convenient when the number of equations is small. With the in- 

crease of degrees of freedom the application of the method becomes more 

complex because of the difficulty in establishing criteria for the 

solvability of systems of quadratic equations of higher order. 

Malikin [ 2,4] offered a different method of constructing Liapunov’s 

function for equations of motion of automatic control systems which re- 

sults in simpler stability conditions. 

The method of Malkin is as follows. Let the motion of an automatic 

control system with one control element be described by differential 

equations which in terms of canonic variables have the form: 

;: = Az + f (u) e b = @ -- rf (b) (0.1): 

where x, /3, e are column matrices of the n-th order containing elements 

xi, pin e;, = 1, (i = 1, . . . , n), respectively, and x is a diagonal 
matrix with the elements xi. The scalars in equation (0. Ii have the 
following meaning: fii are characteristic constants of the s/stem, hi are 

roots of the characteristic equation with Re Ai ( 0, r > 6 ‘2 a constant 

called the feedback coefficient, a is a parameter determining position 

of the control element, and f(oj is a function satisfying the following 

conditions: 
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(a) f(u) is continuous and is such that for given initial conditions 

the equations (0.1) have a unique solution; 

(b) f(0) = 0, f(o)a > 0 for o f 0. Liapunov' s function used is of the 

form 
lJ 

v=$“‘“+~r(+Ss (0.2). 

0 

where A is a symmetric positive definite quadratic form and is derived 

from the condition 

$+Ah+-A’A) (0.3)~ 

(ii’ is the transposition matrix of A) and 0 is some matrix of the negative- 

definite quadratic form. 

Having calculated the de.rivative of V on the basis of (0.1) and taking 

into account the choice of 8, we obtain asymptotic stability conditions 

for the equilibrium position for the equations (0.1): 

where the column matrix g is found from the formula 

2g=--_--Ae (0.5). 

Malkin does not elaborate on how to select the 0 matrix, so that the 

method will give good practical results; furthermore, he used this method 

only in the case of different roots of characteristic equation and one 

zero root of the second order not simple with respect to elementary 

dividers. 

In this paper a form of the 8 matrix is given, stability regions are 

investigated, and Malkin’s method is used in the case of multiple zero 

roots both simple and not simple with respect to elementary dividers. 

1. Let us consider an example which will demonstrate how the matrix 

can be selected and at the same time will permit one to compare the re- 

sults obtained by means of Malkin’s method with results obtained by means 

of other methods. 

bt a nonlinear automatic control system be described by the following 

equations in canonic form: 

All quantities entering these equations are the same as in equations 
(0.11 and X, < 0, X, < 0 are real. Let us choose the 8 matrix of the form 
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fj = --El /I 0 
0 - Ez I 

where f 1 andf2 are some positive numbers. In accortlance with the 

theory, the symmetrical matrix A will be found from the condition 

Then 

a 
El 

ll=--, 
Al 

$2 = 0, a22 = - 5 ) 

IJsing (0.5) let us write the matrix g% 

Let us now write the determinant A such that 

or 

‘Ihis inequality in terms of the rectangular coordinates l/2 13, 

general 

(0.3). 

(1.1) 

and 

l/2 /$ defines the interior of the ellipse (in accordance with the con- 

dition r > 0, f 1 > 0, c z > 0) whose parameters depend on c 1 and c ?. Iet 

us introduce the notations 

Then (1.1) will assume the form: 

sr-l (Y + !I.s? + ss-l (z + z.4z < r (1.2) 

IJtilizing the arbitrariness of c 1 and c2 let us establish the maximum 

stability region for given choice of 0. 

Let Y + Y*C = 0 and 2 + Z*f2 = 0 (this can always be obtained by 

choosing e1 an a c2); the condition (1.2) will be fulfilled. Then y = 

- cly,, z = - c2zq and since y,, z*, cl, and t2 are positive (c 1 and 6 2, 

moreover, are arbltrary) y and z can take on any negative values. 

Let us now determine what positive values are permissible for Y and Z. 
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To this end let us take y + y,cl = 0 so that, c;~(z + zlr2j2 < r. From 

this it follows that 

Fig. 1. Fig. 2. 

--r-f1 - .z* f2 < 2 <\/r-r2 - zac2 and the ri 
B 

ht-hancl side of this in- 

equality reaches its maximum when t2 = r/42* . Consequently, (1.2) is 

satisfied for y < 0 and 2 < r/4z* . In an analogous fashion it can be 

shown that (1.2) is satisfied for z < 0 ant1 j < r/4y* . It remains to 

determine what will take place wllen y > 0 an<1 z > 0. To this end let us 

introduce a number k(0 ,( k < r) and take c;l (y + y,~ 1 1’ < k; then, using 

(1.2), we 0Ltain C 2 -l(z + z*f2j2 < r - k. lllen 

Y<,$ z-$Fk 
l . 

of 

After eliminating k, we sldl leave the I)ounllary for positive values 

y and z: 
/ ~y.7~ + 4z.z = r 

Returning to the original parameters, we shall 0Ltain the following 

inequalities defining the staLility region of the system: 

F, < - rA,, 
i 

82 < - Pi2 @l < 0) 

B? < - rh2 - (hs / h) Bl tp1; 0) 

It can Le sIrown that the region of asymptotic stallility cannot Le in- 

creased Ly changing the 8 matrix when a given construction methotl of the 

Liapunov function is used. ‘Ihe staLility region is depicted in Fig. 1. 

I&, us compare this region with regions ol~tained for this example Ly means 

of other methods. 

In Fig. 2 Loudaries of rrcions ol,taincGl Ly tlbis an81 Ly lflr’e’s methods 

are shown, and in Fig. 3 tllis rfbgion is coqmred with the region obtained 

in [ 51 .OLviously, tlhcx rccion ol,tainetl 1,~ this metllo(l is narrower than the 

one oLtained Ly I.ur’e’s methn,l Lut it is willcr than tljat ohtainetl Ly 

Spasskii. Tn spite of tile fact that otller mctho~ls give wider staLility 
regions, the method of this paper lrns t11e atlvantagc of Leing more pneral, 
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Fig. 3. 

i.e. the considerations that are valid for n = 2 may be applied for any 

n. Indeed, let us consider the system (0.1) and let us assuze that its 

characteristic equation has roots vfhich are real negative and all 

different. 

'Ihen (as in the above example) let us take the 0 matrix of the form 

- e1 0 . . . 0 
f)= OLCZ... 0 

. . . . . . . . . . 
0 o...-c, 

where t i > 0 are arbitrary. Utilizing (0.3) and (0.5) let us find elements 

of the matrix A and the column matrix g: 

Ei 
Uik = 0 (i # Ii), ci Pi 

aii = - -- , 
‘i 

gi = 51; - T 

Let us write the determinant: 

0 
PI 

Cl 
-_ -- . . . 2:: 2 

A= . . . . . . . . . . . . . . . . . . 

From the -condition A > 0 we obtain 

After manipulations analogous to the ones of the above example, we 

shall obtain inequalities defining the stability region for equations 

(0.1) 

pi<-hiF, (Sk = $) 
(k=i. .., II; i-1, . . . . k-l. k+l, . . . . n) 
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Ihis applies to the case of real negative roots. 

2. Let us now suppose that the characteristic equation of the system 

(0.1) has complex conjugate roots with negative real parts as well as real 

negative roots. 

Let Ai, Xi' p,ci = 1, . ..) 2s ) be complex conjugate pairs, 
P.fj = 2a + 1, . . . n> be 

Ai, 

real numbers; furthermore, A. < 0 and 
xi, 

l?', Xi < 0. In this case let us choose the 8 matrix in {he form 

0 -El.. . 0 . . . 0 0 0 

- Cl 0 0 0 0 0 . . . . . . 
. . . ..I.... * * .,.I... .I.. I.. 

e 0 =F 0 . . 1 0 -&28_l 0 . ..o 0 0 0 0 - * --E**-1 0 . . . (2.1) . 
0 0 - 2c2*s1 0 0 0 0 I , . . . 

. 

. . . . . , , . . . 

. . . . 

. . . . . . . . . . . 

0 0 . . 0 0 . 20, . 0 . . - I 

where ci > 0 are arbitrary, lhe same Liapunov's function as before (0.2) 

will be used and its derivative by virtue of (0.1) will be 

P = kz + (Ae + p)zf(u)- rfs(u) (2.2) 

lhe elements of the A matrix determined from (0.3) in this case will 

be 
&i 

aii = 0 (i=l. . . . . 2S)t Uff+l = - ~ 
A,+%+, 

(I =1,6.6, . - . t 2S--1) 

E f 
Qff = - - 

Ai 
(i=2S+l. .-,, n) 

all other aiA = 0. 

Let us consider real variables in (2.2): 

In terms of the new notations the derivative (2.2) can be written as 

follows: 
28-l 

V=- 2’ Sk (Sk2 + u;+l) - $ Sk& + 5 (p 

k=z.S... k=#-I k=zs+l 

+ 2 i [(&k-l - A,~:;_: ~~~~ %k---1 + &k ‘Sk-, f (‘I- rf2 (‘1 
k=l 
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From this, in accordance with (0.41, we shall obtain the following 

con~lition for asymptotic stability: 

llere 

Cl 0 0 . . . 0 y1. 

0 Cl 0 . . . 0 yz’ 

0 0 Es . . . 0 ys’ 

. . . . . . . . . . . . . 

0 0 0 . . . E, p; 

y1’ yz’ y3’ . . 3’ r 1L 

>o 

or 

From this, utilizing the ar!Atrariness of 6 1 anI1 t 2, the conditions 

for asymptotic stability of the system can be obtainetl in a straightfor- 

ward fashion: 

l~i = 2s -t I,..., n; i -: 

Here 
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are positive numbers such that 

xREi_txfj\<I 
i j 

Example. Let us consider an automatic control system described by the 

differential equations which in canonic variables have the following 

form: 

21 = AlQ + f (a) 
i 

i.1 = [ir + p&i ’ 

G2 = 1‘2x3 + f (0) h2 = p1- pzi ) 

fi = 81x1 + pzr2 - ri (4 (PI = ~1 + YZ~, Ba = ~1 - YZ~) 

Here flI < 0, ~2 and y2 f 0, and for all other quantities the same 

assumptions as in the general case apply: 

Fig. 4. 

In accordance with the derived formulas the stability region for this 

example will be defined by the following ineqnality: 

Y2’ < r (AI + AZ) ye -f- $ (hl + h2)2 rs 

The stability region is shown in Fig, 4; here, as in the case of real 

roots of the characteristic equation, the region obtained by the method 

of Lur’e is wider then the one obtained by this method, but the region 

of this method can be obtained for any number of degrees of freedom. 

3. Let us now consider equations of an automatic control system with 

the characteristic equation having n different roots A,, . . . . An such 

that lJe Xi < 0 and the root h = 0 of the second order with k groups of 
corresponding solutions, i.e. the root X = 0 repeats k times and every 
time it has a multiplicity of the second order with respect to elementary 

dividers. 

In terms of canonic variables (and taking into consideration the 
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nature of the roots described above) the equations shall be written as 
follows: 

f il = ; rs1fs (0s) 

I & = h1x,+ _J P41fs (4 ? s-1 

/ 

3=1 

I . . . . . . . . . . . II { Y2 = Yl + 2 rs2fs (0s) 
S=l (3.1) 

k, = hnzn + i /Lfs(4 

. . . . . . . . . . . . 

I 8=1 

(iPk = w-1+ ~rsznfa (4 

B==l 

04 = ps1x1+ * * . + pm&t + qelyl + - * ’ + q&&k 

Such roots of the characteristic equation may occur, for instance, in 

a case when an automatic control system has as its independent elements 
some bodies that are caused to rotate by the regulator about a fixed axis. 

?he uniqueness of the equilibrium position is established by the 

following theorems. 

Theorem 1. In order for the equilibrium position to be unique it* is 

necessary that the number of the regulating elements shall not be less 

than the number of pairs of zero roots (m > k )(number of independent 

elements). 

Theorem 2. If the number of the regulating elements is not less than 

the number of pairs of zero roots (m > k) then in order to ensure that 

the equilibrium position is unique it is sufficient that the order of 

the matrices 

Yll YZl . . - Y,l Q12 414 . . * ql2k 

YIS Y23 * . . Ym3 Qzz 924 * * - q22k 

. . . . . . . . . . . . . . . . . . . . . . 

Y12k--1 Yzzk- 1 ’ . * Ymzk-1 %nn qm4 * ’ . qmnk 

is equal to k. 

Theorem 3. If the number of the regulating elements is equal to the 

number of pairs of zero roots, then in order for the equilibrium position 
to be unique it is necessary and sufficient that the determinants 

r= 

Yll 7'21 . . . Ykl 

YlS Yzk . . . Yk3 

. . . . . . . . . . . . . 

YlZk--1 Y22k--1 * . . Ykzk--1 

Q= 
92% 924 * . . q,,k 

I 

. . . . . . . . . . 

qk2 qka . - - qk2k 
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are different from zero. 

'Ihe proofs of all three theorems are similar to each other. Therefore, 

only the proof of the third theorem will be given here. 

At the equilibrium xi = ci and yi = dj (i = 1, ..*, n, j = 1, . . . . 2k) 

where ci and dj are some constants. Let us substitute these values into 

(3.1). 

'lhe second group (II) of these equations (3.1) will be satisfied for 

US = 0 (s = 1, . . . . m) and for d, = d3 =. ..= d2k_1 = 0. 

The first group of these equations (I) is satisfied for us = fl and 

c 1 =..*= c* = 0. Taking this into account we shall obtain 
* 

qs& + 4, -t.++ Qszkdzk = 0 fs=1. . ..* rn) 

If one assumes that the determinant 7 = 0, then the latter system 

permits a non-zero solution and, consequently, the equilibrium position 

is not unique. Analogously, it can be proved that y f 0. Thus the re- 

strictions irnposen by the theorem are necessary. To prove the sufficiency 

of the restrictions let us note that for y f 0 odd equations of the 

second group (II) of (3.1) with xi = ci yj= di will be satisfied only 

when f,b,) = 0. Let us substitute f,b,) = 0 into the rest of equations 
(3.1) and obtain that c1 =...= cn = 0, d, = d, =...I dzk 1 = 0. Further- 

more, from the condition fs(Os) = 0 it follows that all as = 0, i.e. it 
follows that 

Then from the condition q f 0 it follows that d, = d, =...- dzk = 0 

which proves the sufficiency. 

Let us suppose that the number of regulating elements in equations 

(3.1) is equal to the number of pairs of zero roots and that the Theorem 

3 is satisfied. To investigate stability of the system let us write (3.11 

in matrix form: 

b=Jy+lY, a=pz+Qy (3.2) 

Obviously, the first equation of (3.2) represents the group of equa- 
tions (3.1) and the second equation represents the second group of (3.1). 

The structure of the matrices entering into (3.2) is obvious. They are 

all of the order of the highest numbers n and 2 k and all missing elements 
are filled in with zeros. 

Let us construct Liapunov's function for the equations (3.2) in the 

form 
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where the symnetric matrix A is found from the condition*(0.3) for 0 of 

the form (2.11 and the matrix A is of the form 

81 0 0 . . . 0 

0 0 o...o 

A= 0 0 as...0 6 > 0) 
. . . . . . . . . 

0 0 O...O,j 

It is easily seen that V is a positive definite form of the variables 

5' 
‘ .‘) xn; Y1’ -*a, yzk. By virtue of the system (3.2) we have 

P==fk.r+ -~[J’A+bJ]y.y+d[r’A+QJ]y.F+ 

+f[B’A+Ph]z~F+~PB+QI’]F~F 

It is obvious that J’h+ hJ E 0. ht us form the discriminant of the 

quadratic form - V 

-8 - $ [PA -/- B’A] 

-+ [Ph f B’A] - $ IfPB + Qr-1 + PB + QVl 
Gw 

Let us require that the diagonal minors of this determinant from 

n + 1 order and up shall be greater than zero and, furthermore, 

I"A +QJ = 0 (3.4) 

The last condition contains 2k exact equalities but since matrix Lz 

contains k arbitrary Fi > 0 there will be only k equalities. 

If the above conditions are satisfied, the quadratic form 

will be negative definite with respect to the variables x and F and it 

is always negative with respect to the variables x, y, and F. Neverthe- 

less, it can be shown that if (3.3) and (3.4) are fulfilled, then the 

equilibrium position of the system (3.2) will be asympiotically stable. 

To this end it is sufficient to verify that the integral curves of eTda- 

tions (3.2) intersect all hypersurfaces V= const from outside, i.e. 

that V is always negative or if it becomes zero at some point (other than 

the origin) then at the next point it will be negative again. Indeed, the 

always negative form V becomes zero on the line of intersection of hyper- 
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surfaces Us = 0 when x = 0. 

Let us take a point on this line with n = 0 and all y1 =I y3 =...= 

7’3= 0. Then1 having substituted these values into the system us = 0 

s , . ..) m) with q f 0, we obtain y2 = yU =.. .= y2k = 0, i.e. in this 

case the point under consideration is the origin. Now let us take some 

point on the line of intersection such that x = 0 and there is at least 

one yi f 0 (i = 1, 3, . . . , 2 k - 1). At this point we have 

be 

“I 

'& = q&/l + qssys +* " + qszk-lhk-1 (s = 1, . ..( m) 

Since q f 0 and at least one y i f 0 then at least one of as(y i) will 

other than zero. If us (y i) is not equal to zero then as t increases 

will become other than zero, i.e. the integral curve will leave the 
line of intersection and V will become negative; thus the integral curve 

has touched a point on the hypersurface V = const, but after this it 

intersects the surface from outside. From this it is seen that the 

stability of the equilibrium position is asymptotic. 

Exampls. Let us consider differential equations of motion of a non- 

1 inear automatic system 

Y; = Yllfl (al) + Ydz (Q) 

i2 = Yl + Y&l OJl) + Yzzfz (m) 

+ = Y13fl (al) + Y2312 (a21 

Y4 = !h + YIP/l @l) + Y24f2 (02) 

a1 = 4JllYl + Q12?/2 + 91sy3 + q14y4 

=a = P2lYl + Q22Y2 + qrsys + q24y4 

Let us assume that the equilibrium position of the system under con- 
sideration is unique and that the restrictions of the Theorem 3 are ful- 

filled, ‘l.e. 

912 
, WJ 

In accordance with the obtained results the conditions for asymptotic 
stability of the system under consideration may be written as follows: 

4 
qlk-flk hk Yzk + qzkylk) 

2 qlkylk co* 
k=l k=l 

k=l 
+i 

4 

(%kyzk + %k-flk) 2 %k-fzk 
k=l k-1 

>o 

y11q12 < 0, Yl3914 < 0, Q24YlS - Bl4Y28 = 0 

Y2lQ22 < 0, Y2d24 < 0, !712Y21- YllQ22 = 0 
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The first two 
from (3.4) after 

inequalities are obtained from (3.3) and all the others 
eliminating Si> 0. 

4. Let us now consider the equation of a direct automatic control 

system with m regulating elements and with 

having n different roots Xi(i = 1, . , . , n) 
mot x = 0 of the multiplicity m is simple 
dividers 

k = hz + BF, ;= I’F, 

Ail matrices entering into (4.1) are of 

n and m,and their structure is obvious. 

the characteristic equation 

such that k hi < 0 and the 
with respect to elementary 

0 = P” + Q!, 14.1) 

the order of rn~irn~~ numbers 

Let us suppose that in equations (4.1) the number of regulating 

elements is equal to the number of zero roots, and that the conditions 
for uniqueness of the equilibrium position [5] for (4.1) are fulfilled, 

i.e. (rj f 0, IQ1 f 0. H aving applied the above-described method of 
Liapunov’s function.construction to the system (4.1), it is possible to 
simplify stability criteria obtained for analogous systems [ 51. 

Let us take Liapunov’s function for (4.1) of the form 

where A is determined from the condition (0.3); the quadratic form V is 

positive definite since 1 Q\ f 0. 

Let us differentiate V, taking into account (4.1) 

1/ = exx + [PB + Qr] FI; + [KA + P++’ 

Let us introduce the notation PB + Qf’ =- R and form a discriminant 
of the last quadratic form - V: 

To realize the asymptotic stability of the equilibrium position it is 
sufficient to require that the diagonal minors of the determinant (4.2) 

beginning with the n + 1 order shall be greater than zero. 

Thus, the asymptotic stability conditions are expressed through in- 

equalities, which govern the parameters of the system. In [ 51 , among the 
stability conditions for this case, there are uselT identities,which is 
undesirable in practical applications. 

Example. Let us consider equations of motion of an automatic control 
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system 

Yl = Yllfl c-3) + Y2112 w, 

y2 = Yl2fl(d + Y2212 w, 

al= qw1+ q12ya 

(12 = qwy1 + qzzya 

The characteristic equation of this system has a zero root of the 

second order. 

Asymptotic stability conditions in this case will be written as follows: 

QllYll + q1zy12 < 0 

QllYll + qleYla 

q21y11 + qzey1a 

These conditions are simpler and more inclusive than those obtained 

in [51. 
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