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There are many methods of stability analysis of nonlinear automatic
control systems. As a basis of many investigations in this field the
works of Lur'e [ 3] were used in which he applied a special transformation
to equations of motion of nonlinear automatic control systems and in-
dicated a method of comstructing Liapunov’s function for them. Lur’e’s
method reduces the problem of stability of equilibrium position in auto-
matic control systems to the investigation of solvability of algebraic
systems of quadratic equations. This method gives wide stability regions
and is convenient when the number of equations is small, With the in-
crease of degrees of freedom the application of the method becomes more
complex because of the difficulty in establishing criteria for the
solvability of systems of quadratic equations of higher order.

Malikin [ 2,4)] offered a different method of constructing Liapunov’s
function for equations of motion of automatic control systems which re-
sults in simpler stability conditions.

The method of Malkin is as follows. Let the motion of an automatic
control system with one control element be described by differential
equations which in terms of canonic variables have the form:

2=z +f(0)e 6 =Bz —1/ (o) 0.1y

where «x, B, e are column matrices of the n-th order containing elements
x;, Bi' e;, =1, (i=1, ..., n), respectively, and A is a diagonal
matrix with the elements Ai' The scalars in equation (0.1) have the
following meaning: Bi are characteristic constants of the system, Ai are
roots of the characteristic equation with Re Ai < 0, r> 06 v3 a constant
called the feedback coefficient, o is a parameter determining position
of the control element, and f(o) is a function satisfying thc¢ following
conaitions:
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Stability of nonlinear automatic control systeas 17

(a) f(o) is continucus and is such that for given initial conditions
the equations (0.1) have a unique solution;

(b)Y f(0) = 0, f(oYo> 0 foro # 0. Liapunov’'s function used is of the

form
o

Vm%uﬂx+gﬂﬂh 0.2y

o

where A is a symmetric positive definite quadratic form and is derived
from the condition

e:p%(Ak4~FA) 0.3y

(A is the transposition matrix of X) and € is some matrix of the negative-
definite quadratic form.

Having calculated the derivative of V on the basis of (0.1) and taking
into account the choice of €, we obtain asymptotic stability conditions
for the equilibrium position for the equations (0.1):

—0 g

Axl gr r

>0 0.4»

where the column matrix g is found from the formuls
2g = — B — Ae (0.5).
Malkin does not elaborate on how to select the 8 matrix, so that the
method will give good practical results; furthermore, he used this method
only in the case of different roots of characteristic equation and one

zero root of the second order not simple with respect to elementary
dividers.

In this paper a form of the § matrix is given, stability regions are
investigated, and Malkin's method is used in the case of multiple zero
roots both simple and not simple with respect to elementary dividers.

1. Let us consider an example which will demonstrate how the matrix
can be selected and at the same time will permit one to compare the re-

sults obtained by means of Malkin's method with results obtained by means
of other methods.

let a nonlinear automatic control system be described by the following
equations in canonic form:

&, = N2y + 1 (0), By = My + F(3), 0 = B3y + Bots — 7/ (3)

All quantities entering these equations are the same as in equations
(0.1) and A< 0, A, < 0 are real. Let us choose the 6 matrix of the form
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BZN——SI 0fj

0 —e

where ¢, and ¢, are some positive numbers. In accordance with the general

theory, the symmetrical matrix A will be found from the condition (0.3).
Then

. o . E _{an dre
ayy = N a;, =0, Ao = '’ A= a3 sz “
Using (0.5) let us write the matrix gl
a B
yAN) 2
E e e
2xa 2
Let us now write the determinant A such that
€1 Bl
€1 0 o, 7
A=]o . LI BN
z 2% 2
a B f
272 e 2 r
or
1 €1 Bl\
(le 7))+ (m 7 ) T (1.1)

This inequality in terms of the rectangular coordinates 1/2 f3, and
1/2 f3, defines the interior of the ellipse (in accordance with the con-
dition r > 0, ¢ > 0, €, > 0) whose parameters depend on ¢, and ¢,. let
us introduce the notations

Br By 1 1
7 =Y TS 0T e Dy

Then (1.1) will assume the form:

eyt yea)l et (24282 <r 1.2)

Utilizing the arbitrariness of ¢, and €, let us establish the maximum

stability region for given choice of .

Let y + ye,=0and 2+ 26, =10 (this can always be obtained by
choosing ¢, an (2); the condition (1.2) will be fulfilled. Then y =
- €Y, T= 6,2, and since y,, z,, €¢;, and ¢, are positive (( and ¢ ,,
moreover, are arbitrary) y and z can take on any negative values

Let us now determine what positive values are permissible for y and z.
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To this end let us take y + y ¢, = 0 so that (;1(2 + z*(z)2 < r. From
this it follows that

B
P2 z

Fig. 1. Fig. 2.

—Vre -z, ¢€,<2< Vl*cz - z ¢, and the ri§ht-hand side of this in-
equality reaches its maximum when ¢, = r/4z* . (onsequently, (1.2) is
satisfied for y < 0 and z < r/4z* . In an analogous fashion it can be
shown that (1.2) is satisfied for z < 0 and y < r/4y* . It remains to
determine what will take place wlen y > 0 and 2 > 0. To this end let us
introduce a number k(0 < k< r) and take (Il(y + y*fl)z < k; then, using
(1.2), we obtain (;l(l + z*(2)2 < r — k. Then

k r—k
y<:&&:i z2<_

~ 4z,

After eliminating k, we shall have the loundary for positive values
of y and z:

Ayy +azz=r

Returning to the original parameters, we shall obtain the following
inequalities defining the stability region of the system:

Bl —ri2 B:<0)
5 — rhy,
IS {Bz<'—f)\z—(7\2/7\1)31 Brz-0)

It can be shown that the region of asymptotic stability camnot be in-
creased by changing the 6 matrix when a given construction method of thc
Liapunov function is used. The stability region is depicted in Fig. 1.

Let us compare this region with regions obtained for this example Ly means
of other methods.

In Fig. 2 boundaries of regions abtained by this and by lar’e’s methods
are shown, and in Fig. 3 this region is compared with the region obtained
in [ 5].0bviously, the region obtained Ly this method is narrower than the
one obtained Ly lur’e’s method Lut it is wider than that obtained Ly
Spasskii. In spite of the fact that other methods give wider stability
regions, the method of this paper has the alvantage of being more peneral,
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Fig. 3.

i.e. the considerations that are valid for n = 2 may be applied for any
n. Indeed, let us consider the system (0.1) and let us assume that its
characteristic equation has roots which are real negative and all
different.

Then (as in the above example) let us take the @ matrix of the form

— € 0...0
0——‘62...0

where ¢ . > O are arbitrary. Utilizing (0.3) and (0.5) let us find elements
of the matrix A and the column matrix g:

_ & . 5 B;
aii'——'x';v aik—-o(l#k), gl—"il_l'—_'i’
Let us write the determinant:
e B
€ 0 2
A Z= ] e e e 4 e e s s & ® a s & e e ox oa =
IS S T - ,
D9~ 2 297 2 ¢

From the .condition A > 0 we obtain
1 /¢ Bl 2 178 3n 2
am— BT <
After manipul ations analogous to the ones of the above example, we
shall obtain inequalities defining the stability region for equations

(0.1)

Br<—2yr (3 <0 N\ Bs
i —_)\i ’ S —_ —_
s ' {ﬁk<“’7‘k("—5k) (3;=0) ( g ,Z"‘i)
k=1, ...,m; i=1, ..., k—1. k+1,..., )
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This applies to the case of real negative roots.

2. Let us now suppose that the characteristic equation of the system
(0.1) has complex conjugate roots with negative real parts as well as real

negative roots.
Let A, ox By (i =1, ..., 25 ) be complex conjugate pairs, A ., %,

f’ (j =2a+ 1, ... n) be real numbers; furthemmore, )\J < 0 and
Be z\ < 0. In thls case let us choose the € matrix in the form

0 — 8} . 0 0 0 0
- E1 0 0 0 0 0
.0 PR 0. : . . .G. P ;s. [N .0 . : .. . .O . .
— 28 —1 .
b 0 0 . —Epy 0 6 ... 90 (2.1)
0 o . 0 0 =2, 0
0 0 0 0 0 — 2e,

where ¢ . > 0 are arbitrary. The same Liapunov’s function as before (0.2)
will be used and its derivative by virtue of (0.1) will be

V = 02z 4 (de + B) af (o) — r/? (o) (2.2)

The elements of the A matrix determined from (0.3) in this case will
be

£

0 =0 (=i R T TRIoR (=186 2o

€;
Ay = —— j o= 1, e M
ii Ai (i=g0s+ )
all other a;, = 0.

Let us consider real variables in (2.2):

Ty = Uk + U1 I, Pix= Ty + Tk.ﬂi

Tipr = Uk —Urg1l, By =T —Tpppf (k=1,3,...,25—1)

In terms of the new notations the derivative (2.2) can be written as
follows:
2a—l

V=— 2 sk(uk +uk+x E exzTi + 2 (ﬁk"‘—“)xk]‘(")**“

k=1,8.. k=08-}1 k=241

[ €
+ 2 Z [(12"'_1 - Azkjf'i'l )‘zk )ugk...l + Tzk uzk]f(a) - rfz (O)

k=1
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From this,
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in accordance with (0.4),

condition for asymptotic stability:

we shall obtain the following

E1 0 0 o . 0 Yl.
0 €1 0 'Yz.
0 0 &g vs'
= >0
0 0 0 . e, B,
v1* vt vat BT
Here
* € o I
1 =3 T 7 T T2 = T
.« €3 . €n Bn
V= e Be o, 3
or
L )2 AH 1 ( o5 —1 )2
I R S R £ R . _
G\t e N P + €ooy \ gy hog Teo—1) +
Yas® ¢ Ba )2
— ) -
+623—1+ T (5' 2)\r

From this, utilizing the arbitrariness of ¢, and €55 the conditions
for asymptotic stability of the system can le obtained in a straightfor-

ward fashion:

1 s !
3+1 ( + 1) i 74()‘ } Hl)l' ﬁi<0
Ty < <r~72_,l) ki1 b hakge) Yok -F
2
o (ool i) (r o l?’>
ﬂ | i

Y <L O M) Vi b O b R 1

>0
1
731\'4-2 < <" — 2} lj— 2.1 mi) (Rokgr 4 Porie) Tortr +
J i :
L Qg - hare)? (7 — V — um )

=25+, 0 J-=1,3.,.,2—1,2k- 3., 2s—1; k== 1,.... §-—1)°

Here

A r vl Sl Vi + 1), mi=— =
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are positive numbers such that
3 \
Zmi—Fle <1"
i i

Example. Let us consider an automatic control system described by the
differential equations which in canonic variables have the following
form:

21 = Mz + f(9) ( =1+ pai )
Ty = hoxs + f (G) hg =y — ol

6 = B1a1 + Baza — 1 (6) (Br=11+ Ya2i, Ba=v1— vai)

Here p, < 0, p, and y, # 0, and for all other quantities the same
assumptions as in the general case apply.

Fig, 4.

In accordance with the derived formulas the stability region for this
example will be defined by the following inequality:

YR <r (A 2) vy A % (M1 + hg)t r?

The stability region is shown in Fig. 4; here, as in the case of real
roots of the characteristic equation, the region obtained by the method
of Lur’e is wider then the one obtained by this method, but the region
of this method can be obtained for any number of degrees of freedom,

3. Let us now consider equations of an automatic control system with
the characteristic equation having n different roots Ay weey A, such
that Re A, < 0 and the root A = 0 of the second order with k groups of
corresponding solutions, i.e. the root A = 0 repeats k times and every
time it has a multiplicity of the second order with respect to elementary
dividers.

In terms of canonic variables (and taking into consideration the
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nature of the roots described above) the equations shall Le written as
follows:

Y= Z Ys1fs (95)

[131 NIy s‘ Bs1/s (cs) 8:1m

{ s.—l. e 1l ?}2 =¥y -+ 2‘ Ysofs (9s) (3.1)
|

(

§=1

Tn = MaZpn -+ Z psnfs (08)

s=1

éﬂf = Yok—1 + 273211‘]‘5 (Us)

8==1

0y = PaZi + - PsnZn + a1 + - + GeaxYor

Such roots of the characteristic equation may occur, for instance, in
a case when an automatic control system has as its independent elements
some bodies that are caused to rotate by the regulator about a fixed axis.

The uniqueness of the equilibrium position is established by the
following theorems.

Theorem 1. In order for the equilibrium position to be unique it'is
necessary that the number of the regulating elements shall not be less
than the number of pairs of zero roots (m > k){(number of independent
elements).

Theorem 2. If the number of the regulating elements is not less than
the number of pairs of zero roots (m > k) then in order to ensure that
the equilibrium position is unique it is sufficient that the order of
the matrices

Y11 Y1 - - o« Y ]thz qus - - - Qo

Yi3 Y28 . . - Ym.‘i qa2 g2a .« . . Qng

Yiok—1 Yook—~1° * * Ymok—1 Ime TIms * - - Ymok
1s equal to k.

Theorem 3. If the number of the regulating elements is equal to the
number of pairs of zero roots, then in order for the equilibrium position
to be unique it 1s necessary and sufficient that the determinants

Y11 Y21 o .. Yl\'l g1z q1a .+ - 910k

v = ?13. Yor - - * Yig g = gez Q2a - . - Qoo

Yigh—1 Yook—1 + - * Ykek—1 P P
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are different from zero.

The proofs of all three theorems are similar to each other. Therefore,
only the proof of the third theorem will be given here.
At the equilibrium x,=c,and y; = d.(i=1, ..., n, j=1, ..., 2k)

1
where c; and d. are some constants. let us substitute these values into

(3.1).

The second group (IT) of these equations (3.1) will be satisfied for

0,=0(=1, ..., m) and for dy = dy=...=dy, , =0
The first group of these equations (I) is satisfied for o = 0 and
¢y =...= ¢, = 0. Taking this into account we shall obtain
@soda + Qegldy -+ -+ -+ Qszkdzk =0 {s=1, ..., M}

If one assumes that the determinant g = 0, then the latter system
permits a non-zero solution and, consequently, the equilibrium position
1s not unique. Analogously, it can be proved that y # 0. Thus the re-
strictions imposed by the theorem are necessary. To prove the sufficiency
of the restrictions let us note that for y # 0 odd equations of the
second group (IT) of (3.1) with x; = ¢, y.= d. will be satisfied only
when f (o ) = 0. Let us substitute f (os) 0 into the rest of equations
(3.1) and’obtain that €y =eee= 0, d =dy=...=d,, , = 0. Further-
more, from the condition f (o) t follows that allo_= 0, ie. it
follows that

n

01

ll

Qoolz + Goads + -+ quordor = 0
Then from the condition q # 0 it follows that dy=dy=...=d,, =0

4 2k
which proves the sufficiency.

let us suppose that the number of regulating elements in equations
(3.1) is equal to the number of pairs of zero roots and that the Theorem
3 is satisfied. To investigate stability of the system let us write (3.1)
in matrix form:

£ =z + BF, y=Jy+TF, ¢ =pz+Qy 3.2
Obviously, the first equation of (3.2) represents the group of equa-
tions (3.1) and the second equation represents the second group of (3.1).

The structure of the matrices entering into (3.2) is obvious. They are
all of the order of the highest numbers n and 2k and all missing elements
are filled in with zeros.

Let us construct Liapunov’s function for the equations (3.2) in the
form
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m %g

V=1 dzz 5 Ayy + Q) st("s)d"*

§=1 g

where the symmetric matrix A is found from the condition'(0.3) for @ of
the form (2.1) and the matrix A is of the fom

3% 00 ...0
0 00...0

A=[0 0 8 ...0 (3 > 0)
0 00 ...0I

It is easily seen that V is a positive definite form of the variables
Xy wees X Yia ocees Yope By virtue of the system {3.2) we have
V=bz-z+ LJA+Aly-y+ (A + QN1y-F +

+ - [B'A+P\z-F+4[PB+QU|F-F

It is obvious that J°A + AJ = 0. Let us form the discriminant of the
quadratic form - V

8 — L1pan 4 B'A)
(3.3)

T
—L[Pr 4+ B'4]  — L[(PB+ Q)+ (PB + QU]

Let us require that the diagonal minors of this determinant from
n + 1 order and up shall be greater than zero and, furthermore,

A+ QJ =0 (3.4)

The last condition contains 2k exact equalities but since matrix A
contains k arbitrary 8, > 0 there will be only k equalities.

If the above conditions are satistied, the quadratic fomm
V="0z.2 4+ (BA+ PNz F-+[PB+QUIFF

will be negative definite with respect to the variables x and F and it

is always negative with respect to the variables x, y, and F, Neverthe-
less, it can be shown that if (3.3) and (3.4) are fulfilled, then the
equilibrium position of the system (3.2) will be asymptotically stable.
To this end it is sufficient to verify that the integral curves of equa-
tions (3.2) intersect all hypersurfaces V = const from outside, i.e.

that V is always negative or if it becomes zero at some point (other than
the origin) then at the next point it will be negative again. Indeed, the
always negative form V becomes zero on the line of intersection of hyper-
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surfaces 0 = 0 when x = 0.

Let us take a point on this line with x = 0 and all y, = Y3 ==
Yyp—1 = 0. Then, having substituted these values into the systemo = 0
(s="1, ..., m) with g # 0, we obtain y, = y, =...= y,, = 0, i.e. 1in this
case the point under consideration is the origin., Now let us take some
point on the line of intersection such that x = 0 and there is at least
oney, #0(i=1 3, ..., 2k~ 1). At this point we have

C;s = @1t + Qs3Ys +.- 4 Gsok —1Y2k—1 (s=1, ... m)

Since ¢ # 0 and at least one y; # 0 then at least one of os(yi) will
be other than zero. If as(yi) is not equal to zero then as t increases
o, will become other than zero, i.e. the integral curve will leave the
line of intersection and V will become negative; thus the integral curve
has touched a point on the hypersurface V = const, but after this it
intersects the surface from outside. From this it is seen that the
stability of the equilibrium position 1s asymptotic.

Example. Let us consider differential equations of motion of a non-
linear automatic system

y'l = Yuf1 (61) + Y21/2 (c2)

Y2 = Y1 + Y1af1 (01) + Yaof2 (02)

3;3 = ¥13f1 (61) + vesfz (52)

Y= Ys + Y14/1 (1) + Y2ef2 (02)

o1 = quy1 + qr2y2 + q1sys + qraYe
G2 = g21Y1 + G22ya -+ Gasys + F24Yq

Let us assume that the equilibrium position of the system under con-
sideration is unique and that the restrictions of the Theorem 3 are ful-
filled, l.e.

q12  que

| g22  Qa 70,

0

\Yu Yo
Yis Y23

In accordance with the obtained results the conditions for asymptotic
stability of the system under consideration may be written as follows:

¢ 4
1

. 2 91k Y1k ry 2 (9ak Yo + 9ok Y1)

k=1 k=1
2 qllek < 01 4 4 > 0
k=1

% 2 91k Yo + oY1) E TokYok
k=1 k=1

g1z < 0, Y1314 < 0, g2aY13 — quay2s =0
Y2192z < O, Y2324 < 0, qizva1 — Yuge =0
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The first two inequalities are obtained from (3.3) and all the others
from (3.4) after eliminating 8i> 0.

4. let us now consider the equation of a direct automatic control
system with m regulating elements and with the characteristic equation
having n different roots A (i = 1, ..., n) such that Re A, < 0 and the
root A = 0 of the multiplicity m is simple with respect to elementary
dividers

= z+BF, y=TF, o=pz+Qy (4.1)

All matrices entering into (4.1) are of the order of maximum numbers
n and m,and their structure is obvious.

Let us suppose that in equations (4.1) the number of regulating
elements 1is equal to the number of zero roots, and that the conditions
for uniqueness of the equilibrium position [5] for (4.1) are fulfilled,
i.e. |’} £ 0, [Q] # 0. Having applied the above-described method of
Liapunov’s function.construction to the system (4.1), it is possible to
simplify stability criteria obtained for analogous systems [5].

Let us take Liapunov’s function for (4.1) of the form
m °8
V:-;—ASSCC"{' 2} S]‘s(as)dcs
s==1 O
where A is determined from the condition (0.3); the quadratic form V is
positive definite since [Q] £ 0.

let us differentiate V, taking into account (4.1)
V = 6zz + [PB + QU] FF + [B'A 4 PA[2F

Let us introduce the notation PB + QI =~ R and form a discriminant
of the last quadratic form - V:

—0 — [ A+ P (4.2)
L 2Bt SR R

To realize the asymptotic stability of the equilibrium position it 1s
sufficient to require that the diagonal minors of the determinant (4.2)
beginning with the n + 1 order shall bLe greater than zero.

Thus, the asymptotic stability conditions are expressed through in-
equalities, which govern the parameters of the system. In [5], among the
stability conditions for this case, there are usel identities,which is
undesirable in practical applications,

Example., Let us consider equations of motion of an automatic control
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system

1,./1 = yuf1 (61) + Ya1/2 (52), o1 = qu¥1 + q12¥2
3}2 == y12f1 (61) + Ya2f2 (2), G2 = guY1 + Gz2Y2

The characteristic equation of this system has a zero root of the
second order.

Asymptotic stability conditions in this case will be written as follows:
gnyn + g2y <0

quyn + qieYie quYzr + qr2Ya2 >0
g21711 + G22Y12 Q21721 + 22Y22
These conditions are simpler and more inclusive than those obtained
in [5].
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